======= Note-AI ======= This is kind of Notepad editor with AI functions. - To set up the environment you can install Miniconda_. - For details see `Environment Setup`_. - Get `Python Source`_. .. _Miniconda: https://docs.conda.io/projects/miniconda/en/latest/ .. _Python Source: ../../ai_note.py .. csv-table:: Useful Links :header: "Name", "URL" :widths: 10 30 "LM Arena", https://lmarena.ai/leaderboard "OpenAI Models", https://platform.openai.com/docs/models "GPT-4.1 Prompting Guide", https://cookbook.openai.com/examples/gpt4-1_prompting_guide "OpenAI Cookbook", https://cookbook.openai.com/ "OpenAI Resources and guides", https://openai.com/business/guides-and-resources/ .. .. contents:: The provided Python code is a Streamlit_ application designed to interact with `OpenAI's language models`_, allowing users to generate and save notes based on prompts. .. _Streamlit: https://docs.streamlit.io/ .. _OpenAI's language models: https://platform.openai.com/docs/models **User Input**: - A text area is provided for users to input their notes. - A sidebar allows users to select a prompt from the loaded prompts. :: import streamlit as st from openai import OpenAI import yaml import tiktoken import textwrap import platform import time import os import ollama import pyperclip Prints a stylized banner to the console when the application starts. :: st.set_page_config( page_title="Note-AI", ) @st.cache_data def print_banner(): print(""" _ __ __ ___ ____ / | / /___ / /____ / | / _/ / |/ / __ \/ __/ _ \______/ /| | / / / /| / /_/ / /_/ __/_____/ ___ |_/ / /_/ |_/\____/\__/\___/ /_/ |_/___/ """) return 1 print_banner() st.logo("https://ea-books.netlify.app/lit/ai_note.svg") An instance of the OpenAI client is created to facilitate communication with the `OpenAI API`_. .. _OpenAI API: https://platform.openai.com/docs/guides/text-generation :: client = OpenAI() Load LLM prompts ---------------- The application reads prompts from a YAML file (`openai_helper.yml`). Each prompt has a name and a corresponding note that describes what the prompt should do. .. csv-table:: Useful Links :header: "Name", "URL" :widths: 10 30 "Prompt engineering", https://platform.openai.com/docs/guides/prompt-engineering :: prompts_file = "openai_helper.yml" with open(prompts_file, 'r') as file: prompts = yaml.safe_load(file) text = st.text_area(f"Note", height=300) Prompt Tags ----------- Read a list of strings from a file :: def read_list_from_file(filename): try: with open(filename, 'r') as file: # Read all lines and remove leading/trailing whitespace lines = [line.strip() for line in file.readlines()] return lines except FileNotFoundError: return [] except Exception as e: print(f"Error reading {filename}: {e}") return [] Write a list of strings to a text file :: def write_list_to_file(filename, list_of_strings): try: with open(filename, 'w') as file: for string in list_of_strings: file.write(string + '\n') except Exception as e: print(f"Error writing {filename}: {e}") Removes specified strings from a list of strings. :: def remove_strings_from_list(string_list, strings_to_remove): return [s for s in string_list if s not in strings_to_remove] Collect all tags into a single set :: tags_file = "openai_tags.txt" def sort_by_pattern(all_tags): tags_order = read_list_from_file(tags_file) # Create a mapping from tag to priority index for known tags. tag_priority = { tag: index for index, tag in enumerate(tags_order) } # Sort the all_tags list. # For tags in tags_order, the key is (0, priority) and for others (1, tag) sorted_tags = sorted(all_tags, key=lambda tag: (0, tag_priority[tag]) if tag in tag_priority else (1, tag)) return sorted_tags all_tags_set = {tag for item in prompts for tag in item.get('tags', [])} all_tags = sort_by_pattern(list(all_tags_set)) all_tags.insert(0, "all") tag_name = st.sidebar.selectbox( "Tag", all_tags, ) Select the Prompt ----------------- :: def get_prompt(name): for entry in prompts: if entry['name'] == name: return entry.get('note') return None if tag_name == "all": prompt_names = [item['name'] for item in prompts] else: prompt_names = [item['name'] for item in prompts if tag_name in item.get('tags', [])] prompt_name = st.sidebar.selectbox( "Prompt", prompt_names, ) prompt = get_prompt(prompt_name) st.write(prompt) Select OpenAI LLM ----------------- :: model_type = st.sidebar.radio("Model Type", ["Gemini", "OpenAI", "Ollama"]) if model_type=="Gemini": llm_models = [ "gemini-2.5-flash-preview-05-20", "gemini-2.0-flash", "gemma-3-27b-it", ] elif model_type=="OpenAI": openai_prices = { "gpt-4.1-mini": 0.4, "gpt-4.1-nano": 0.1, "gpt-4.1": 2.0, "gpt-4o-mini": 0.15, "o4-mini": 1.10, "o3-mini": 1.10, "gpt-4o": 2.5, "o3": 2.0, "o3-pro": 20.0, } llm_models = list(openai_prices.keys()) else: llm_models = [ "ollama llama3.2", ] llm_temperatures = [0, 0.1, 0.7, 1] openai_model = st.sidebar.selectbox( "LLM Model", llm_models, index = 0 ) llm_temperature = st.sidebar.select_slider( "LLM Temperature", options = llm_temperatures, value = 0.1 ) Tokens & Price -------------- If a button in the sidebar is clicked, the application counts the number of tokens in the user's input using the `tiktoken`_ library and displays the count. .. _tiktoken: https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken .. csv-table:: Useful Links :header: "Name", "URL" :widths: 10 30 "Model Pricing", https://platform.openai.com/docs/pricing#latest-models :: if model_type=="OpenAI": encoding = tiktoken.encoding_for_model("gpt-4o-mini") tokens = encoding.encode(text) cents = round(len(tokens) * openai_prices[openai_model]/10000, 5) st.sidebar.write(f''' | Characters | Tokens | Cents | |---|---|---| | {len(text)} | {len(tokens)} | {cents} | ''') Call ``o`` model ---------------- .. csv-table:: Useful Links :header: "Name", "URL" :widths: 10 30 "Reasoning with o1", https://learn.deeplearning.ai/courses/reasoning-with-o1/lesson/1/introduction :: def call_o_model(prompt, text): messages = [ #{"role": "user", "content": f"{prompt}\n{text}"}, {"role": "developer", "content": prompt}, {"role": "user", "content": text}, ] response = client.chat.completions.create( model=openai_model, messages=messages, ) return response.choices[0] Call ``gpt`` model ------------------ :: def call_gpt_model(prompt, text): messages = [ {"role": "developer", "content": prompt}, {"role": "user", "content": text}, ] response = client.chat.completions.create( model=openai_model, messages=messages, temperature=llm_temperature, ) return response.choices[0] Call Ollama ----------- .. csv-table:: Useful Links :header: "Name", "URL" :widths: 10 30 "Ollama", https://github.com/ollama/ollama?tab=readme-ov-file "Ollama Python", https://github.com/ollama/ollama-python :: def call_ollama(prompt, text): model = openai_model[len("ollama "):] messages = [ {"role": "system", "content": prompt}, {"role": "user", "content": text}, ] return ollama.chat( model=model, messages=messages, ) Call Gemini ----------- .. csv-table:: Useful Links :header: "Name", "URL" :widths: 10 30 "Text generation", https://ai.google.dev/gemini-api/docs/text-generation?lang=python "OpenAI compatibility", https://ai.google.dev/gemini-api/docs/openai "Example applications", https://ai.google.dev/gemini-api/docs/models/generative-models#example-applications "Model variants", https://ai.google.dev/gemini-api/docs/models/gemini#model-variations "Google Gen AI SDKs", https://ai.google.dev/gemini-api/docs/sdks :: def call_gemini(prompt, text): g_key = os.getenv("GEMINI_API_KEY") g_client = OpenAI( api_key=g_key, base_url="https://generativelanguage.googleapis.com/v1beta/openai/" ) messages = [ {"role": "developer", "content": prompt}, {"role": "user", "content": text}, ] response = g_client.chat.completions.create( model=openai_model, messages=messages, temperature=llm_temperature, ) return response.choices[0] def call_gemma(prompt, text): g_key = os.getenv("GEMINI_API_KEY") g_client = OpenAI( api_key=g_key, base_url="https://generativelanguage.googleapis.com/v1beta/openai/" ) messages = [ {"role": "user", "content": f"{prompt}\n{text}"}, #{"role": "developer", "content": prompt}, {"role": "user", "content": text}, ] response = g_client.chat.completions.create( model=openai_model, messages=messages, temperature=llm_temperature, ) return response.choices[0] When the user clicks a button to call OpenAI: - The application sends the selected prompt and user input to the OpenAI API. - The response is stored in the session state and displayed to the user. - The execution time for the API call is calculated and can be used for monitoring performance. By the way, we can use emojis in buttons. .. csv-table:: Useful Links :header: "Name", "URL" :widths: 10 30 "OpenAI Chat API", https://platform.openai.com/docs/api-reference/chat "Streamlit emoji shortcodes", https://streamlit-emoji-shortcodes-streamlit-app-gwckff.streamlit.app/ "Emoji Cheat Sheet", https://www.webfx.com/tools/emoji-cheat-sheet/ :: # Concatenate request def concat_request(prompt, text): return prompt + "\n\n```\n" + text + "\n```\n" if st.button(':thinking_face:   Query', type="primary", use_container_width=True): start_time = time.time() if openai_model.startswith("ollama "): response = call_ollama(prompt, text) elif openai_model.startswith("o"): response = call_o_model(prompt, text) elif openai_model.startswith("gemini"): response = call_gemini(prompt, text) elif openai_model.startswith("gemma"): response = call_gemma(prompt, text) else: response = call_gpt_model(prompt, text) st.session_state.openai_result = response.message.content st.write(st.session_state.openai_result) # Calculate and print execution time end_time = time.time() execution_time = end_time - start_time # print(f'Execution time: `{execution_time:.1f}` seconds') # Move selected tag to the beginning of the list all_tags = remove_strings_from_list(all_tags, ["all", tag_name]) all_tags.insert(0, tag_name) write_list_to_file(tags_file, all_tags) if platform.system() == 'Darwin': os.system("afplay /System/Library/Sounds/Glass.aiff") st.rerun() ``openai_result`` is cached in a `session_state`_. .. _session_state: https://docs.streamlit.io/get-started/fundamentals/advanced-concepts#session-state :: if "openai_result" not in st.session_state: st.session_state.openai_result = '' else: st.write('---') st.write(st.session_state.openai_result) Save note --------- Notes will be saved to ``ai_note`` folder which is expected to exist. Output format can be XML with request, response and prompt name, or just response markdown. :: note_name = st.text_input("Note Name:") save_formats = ["Markdown", "XML"] out_format = st.radio(openai_model + ":", ["Clipboard", "Request"] + save_formats, horizontal=True) button_name = "Save" if out_format in save_formats else "Copy" def save_note_disabled(): return len(note_name.strip())==0 and out_format in save_formats if st.button(':spiral_note_pad: ' + button_name, disabled=save_note_disabled()): if out_format == "Clipboard": pyperclip.copy(st.session_state.openai_result) st.write(f'Copied to clipboard') if out_format == "Request": pyperclip.copy(concat_request(prompt, text)) st.write(f'Request copied to clipboard') elif out_format == "XML": xml = textwrap.dedent(f""" {prompt_name} """).strip() out_file = f"ai_note/{note_name}.xml" with open(out_file, 'w') as file: file.write(xml) st.write(f'Note saved: `{out_file}`') else: out_file = f"ai_note/{note_name}.md" with open(out_file, 'w') as file: file.write(st.session_state.openai_result) st.write(f'Note saved: `{out_file}`') Environment Setup ----------------- To set up your environment using Miniconda_, follow the steps below. These instructions will guide you through installing Miniconda, configuring your environment, and running a Streamlit application tailored for AI tasks. Step 1: Install Miniconda ========================= First, you need to install Miniconda. Visit the `Miniconda website `__ and follow the installation instructions for your operating system. Step 2: Configure Your Environment ================================== 1. **Create the Environment File** Create a file named ``environment.yml`` in your project directory. Paste the following contents into this file: .. code:: yaml name: ai_note channels: - conda-forge - defaults dependencies: - python=3.11.0 - openai - tiktoken - streamlit - pyperclip - pip: - ollama 2. **Select conda-forge Channel** Open your terminal or command prompt and execute the following commands to prioritize the ``conda-forge`` channel: .. code:: shell conda config --add channels conda-forge conda config --set channel_priority strict 3. **Create the Environment** Still in your terminal, navigate to the directory containing your ``environment.yml`` file. Create the Conda environment by running: .. code:: shell conda env create -f environment.yml Step 3: Activate the Environment ================================ Activate your newly created environment by executing: .. code:: shell conda activate ai_note Step 4: Prepare Prompt File =========================== Create a file named ``openai_helper.yml`` in your project directory. This file should contain various prompts for the tasks you want to accomplish. You can include tags in your prompts to categorize them. Here’s an example of how to structure the contents: .. code:: yaml - name: grammar note: You will be provided with statements in markdown, and your task is to convert them to standard English. tags: - text - name: improve_style note: Improve style of the content you are provided. tags: - text - name: summarize_md note: You will be provided with statements in markdown, and your task is to summarize the content. tags: - text - name: explain_python note: Explain Python code you are provided. tags: - python - name: write_python note: Write Python code to satisfy the description you are provided. tags: - python .. csv-table:: Useful Links :header: "Name", "URL" :widths: 10 30 "Examples of OpenAI prompts", https://platform.openai.com/examples Step 5: Run Streamlit Script ============================ With your environment set up and activated, and your ``openai_helper.yml`` file ready, you’re now set to run your Streamlit application. Execute the following command in your terminal: .. code:: shell streamlit run ai_note.py And that’s it! Your Streamlit application should now be running, and you can interact with it through your web browser.