Note-AI

This is kind of Notepad editor with AI functions.

The provided Python code is a Streamlit application designed to interact with OpenAI’s language models, allowing users to generate and save notes based on prompts.

User Input:
  • A text area is provided for users to input their notes.

  • A sidebar allows users to select a prompt from the loaded prompts.

import streamlit as st
from openai import OpenAI
import yaml
import tiktoken
import textwrap
import platform
import time
import os
import ollama
import pyperclip

Prints a stylized banner to the console when the application starts.

@st.cache_data
def print_banner():
    print("""
        _   __      __             ___    ____
       / | / /___  / /____        /   |  /  _/
      /  |/ / __ \/ __/ _ \______/ /| |  / /
     / /|  / /_/ / /_/  __/_____/ ___ |_/ /
    /_/ |_/\____/\__/\___/     /_/  |_/___/
    """)
    return 1

print_banner()

An instance of the OpenAI client is created to facilitate communication with the OpenAI API.

client = OpenAI()

Load LLM prompts

The application reads prompts from a YAML file (openai_helper.yml). Each prompt has a name and a corresponding note that describes what the prompt should do.

prompts_file = "openai_helper.yml"
with open(prompts_file, 'r') as file:
    prompts = yaml.safe_load(file)

def get_prompt(name):
    for entry in prompts:
        if entry['name'] == name:
            return entry.get('note')
    return None

text = st.text_area(f"Note", height=300)

Select the prompt.

prompt_names = [item['name'] for item in prompts]
prompt_name = st.sidebar.selectbox(
   "Prompt",
   prompt_names,
)
prompt = get_prompt(prompt_name)
st.write(prompt)

Select OpenAI LLM

Useful Links

Name

URL

OpenAI Models

https://platform.openai.com/docs/models

openai_models = ["gpt-4o", "gpt-4o-mini", "o1-mini", "o1", "ollama"]
openai_temperatures = [0, 0.7, 1]

openai_model = st.sidebar.selectbox(
   "OpenAI Model",
   openai_models,
   index = 1
)

openai_temperature = st.sidebar.select_slider(
   "OpenAI Temperature",
   options = openai_temperatures,
   value = 0.7
)

Count tokens

If a button in the sidebar is clicked, the application counts the number of tokens in the user’s input using the tiktoken library and displays the count.

By the way, we can use emojis in buttons.

Useful Links

Name

URL

Streamlit emoji shortcodes

https://streamlit-emoji-shortcodes-streamlit-app-gwckff.streamlit.app/

Emoji Cheat Sheet

https://www.webfx.com/tools/emoji-cheat-sheet/

if st.sidebar.button('Count Tokens'):

    encoding = tiktoken.encoding_for_model(openai_model)
    tokens = encoding.encode(text)
    st.write('---')
    st.write(f'Tokens: `{len(tokens)}`')

Call OpenAI API

openai_result is cached in a session_state.

if "openai_result" not in st.session_state:
    st.session_state.openai_result = ''

st.write('---')
st.write(st.session_state.openai_result)

Call o1 model

Useful Links

Name

URL

Reasoning with o1

https://learn.deeplearning.ai/courses/reasoning-with-o1/lesson/1/introduction

def call_o1_model(prompt, text):
    messages = [
        #{"role": "user", "content": f"<instructions>{prompt}</instructions>\n<user_input>{text}</user_input>"},
        {"role": "developer", "content": prompt},
        {"role": "user", "content": text},
    ]
    response = client.chat.completions.create(
        model=openai_model,
        messages=messages,
    )
    return response.choices[0]

Call o1-predecessor model.

def call_earlier_model(prompt, text):
    messages = [
        {"role": "developer", "content": prompt},
        {"role": "user", "content": text},
    ]
    response = client.chat.completions.create(
            model=openai_model,
            messages=messages,
            temperature=openai_temperature,
        )
    return response.choices[0]

Call Ollama.

Useful Links

Name

URL

Ollama

https://github.com/ollama/ollama?tab=readme-ov-file

Ollama Python

https://github.com/ollama/ollama-python

def call_ollama(prompt, text):
    messages = [
        {"role": "system", "content": prompt},
        {"role": "user", "content": text},
    ]
    return ollama.chat(
            model='llama3.2',
            messages=messages,
        )

When the user clicks a button to call OpenAI:

  • The application sends the selected prompt and user input to the OpenAI API.

  • The response is stored in the session state and displayed to the user.

  • The execution time for the API call is calculated and can be used for monitoring performance.

Useful Links

Name

URL

OpenAI Chat API

https://platform.openai.com/docs/api-reference/chat

st.sidebar.write('---')
if st.sidebar.button(':thinking_face: &nbsp; Call OpenAI', type="primary"):

    start_time = time.time()

    if "o1" in openai_model:
        response = call_o1_model(prompt, text)
    elif "ollama" == openai_model:
        response = call_ollama(prompt, text)
    else:
        response = call_earlier_model(prompt, text)

    st.session_state.openai_result = response.message.content
    st.write(st.session_state.openai_result)

    # Calculate and print execution time
    end_time = time.time()
    execution_time = end_time - start_time
    # print(f'Execution time: `{execution_time:.1f}` seconds')

    if platform.system() == 'Darwin':
        os.system("afplay /System/Library/Sounds/Glass.aiff")
    st.rerun()

Save note

Notes will be saved to ai_note folder which is expected to exist.

Output format can be XML with request, response and prompt name, or just response markdown.

note_name = st.text_input("Note Name:")

out_format = st.radio("Output:", ["Clipboard", "Markdown", "XML"], horizontal=True)

def save_note_disabled():
    return len(note_name.strip())==0 and out_format != "Clipboard"

if st.button(':spiral_note_pad: Save', disabled=save_note_disabled()):
    if out_format == "Clipboard":
        pyperclip.copy(st.session_state.openai_result)
        st.write(f'Copied to clipboard')
    elif out_format == "XML":
        xml = textwrap.dedent(f"""
            <note>
              <question><![CDATA[{text}]]></question>
              <prompt>{prompt_name}</prompt>
              <answer><![CDATA[{st.session_state.openai_result}]]></answer>
            </note>
        """).strip()
        out_file = f"ai_note/{note_name}.xml"
        with open(out_file, 'w') as file:
            file.write(xml)
        st.write(f'Note saved: `{out_file}`')
    else:
        out_file = f"ai_note/{note_name}.md"
        with open(out_file, 'w') as file:
            file.write(st.session_state.openai_result)
        st.write(f'Note saved: `{out_file}`')

Environment Setup

To set up your environment using Miniconda, follow the steps below. These instructions will guide you through installing Miniconda, configuring your environment, and running a Streamlit application tailored for AI tasks.

Step 1: Install Miniconda

First, you need to install Miniconda. Visit the Miniconda website and follow the installation instructions for your operating system.

Step 2: Configure Your Environment

  1. Create the Environment File

    Create a file named environment.yml in your project directory. Paste the following contents into this file:

    name: ai_note
    channels:
      - conda-forge
      - defaults
    dependencies:
      - python=3.11.0
      - openai
      - tiktoken
      - streamlit
      - ollama
      - pyperclip
    
  2. Select conda-forge Channel

    Open your terminal or command prompt and execute the following commands to prioritize the conda-forge channel:

    conda config --add channels conda-forge
    conda config --set channel_priority strict
    
  3. Create the Environment

    Still in your terminal, navigate to the directory containing your environment.yml file. Create the Conda environment by running:

    conda env create -f environment.yml
    

Step 3: Activate the Environment

Activate your newly created environment by executing:

conda activate ai_note

Step 4: Prepare Prompt File

Create a file named openai_helper.yml in your project directory. This file should contain various prompts for the tasks you want to accomplish. Here’s an example of how to structure the contents:

- name: grammar
  note: You will be provided with statements in markdown, and your task is to convert them to standard English.

- name: improve_style
  note: Improve style of the content you are provided.

- name: summarize_md
  note: You will be provided with statements in markdown, and your task is to summarize the content.

- name: explain_python
  note: Explain Python code you are provided.

- name: write_python
  note: Write Python code to satisfy the description you are provided.

- name: improve_style
  note: Improve style of the content you are provided.
Useful Links

Name

URL

Examples of OpenAI prompts

https://platform.openai.com/examples

Step 5: Run Streamlit Script

With your environment set up and activated, and your openai_helper.yml file ready, you’re now set to run your Streamlit application. Execute the following command in your terminal:

streamlit run ai_note.py

And that’s it! Your Streamlit application should now be running, and you can interact with it through your web browser.